A NOVEL APPROACH TO CARBOCYCLIC ANALOGUES OF NUCLEOSIDES

Michael Bodenteich and Herfried Griengl*

Institute of Organic Chemistry,
Technical University Graz, Stremayrgasse 16, A-8010 Graz, Austria

Abstract: (±)-1-[(1\alpha,3\alpha,4\alpha)-3-Hydroxy-4-hydroxymethylcyclopentyl]-(1\hbar H,3\hbar H)-pyrimidin-2,4-dione
(6) was synthesized starting from endo-5-norbornen-2-yl acetate via the urea derivative 5 in 32% overall yield.

Carbocyclic analogues of nucleosides, the sugar moiety of which is replaced by a cyclopentane ring, have been the object of a number of synthetic efforts. and their interesting biological properties such as antiviral, antitumor and antimicrobial activity have generated considerable interest in this field. Yet, only a few synthetic carbocyclic pyrimidine and purine nucleoside analogues have been obtained enantiomerically pure by a chemoenzymatic approach, by multistep synthesis. or by enzymatic resolution in case of the monophosphate of racemic aristeromycin. Therefore, we developed a general synthetic strategy which should open an easy access to large quantities of enantiomerically pure carbocyclic nucleoside analogues.

Starting from *endo*-norbornenyl acetate 1, which can be obtained in high enantiomeric purity by enzymatic resolution of the racemate using lipase from *Candida cylindracea*, a straightforward synthesis can be performed.

a. i: 0s/MeOH/~70°; ii: LiAlH4; iii: aqueous MgSO4 solution. b. Benzaldehyde dimethylacetal/HBF4/rt. c. PDC/DMF/rt/6 h. d. i: Ethyl chloroformate/~40°C/30 min; ii: NaNs/~10°C/30 min; iii: Curtius rearrangement in benzene/ 80°C/30 min; iv: NHs(g). e. Ethoxyacryloyl chloride/pyridine/rt/24 h. f. 2 N/HsSO4/95°C/2 h

(t)-(1 α ,3 α ,4 α)-4-Hydroxycyclopentan-1,3-dimethanol 2° (for all compounds only one enantiomer is given in the scheme) was obtained by ozonolysis of norbornenyl acetate 1 in methanol with subsequent reductive workup (LiAlH₄) of the crude methyl hydroperoxide in THF' at -30 °C in 93% yield. Acetalisation of 2 using benzaldehyde dimethylacetal/HBF₄' gave the protected compound 3 as an oil (80% yield)' , which was converted into the carboxylic acid 4 by oxidation with pyridinium dichromate in dimethylformamide' (quant. yield). This acid was used in the following steps without purification.

Treatment of 4 with ethyl chloroformate and sodium azide followed by Curtius rearrangement in benzene and addition of gaseous ammonia to the intermediate isocyanate in a one pot procedure^{5to} furnished the crystalline urea derivative 5 (58%, mp 165-166°C, 2-propanol)¹⁵. Conversion of 5 into the carbocyclic uridine analogue 6 was achieved by reaction with 2-ethoxyacryloyl chloride ¹⁶. A subsequent deprotection and cyclisation step by heating with 2 N H₂SO₄ gave (\pm)-1-[(1 α ,3 α ,4 α)-3-hydroxy-4-hydroxymethylcyclopentyl]-(1H,3H)-pyrimidin-2,4-dione (6)¹⁷ (74% yield).

In summary, this synthesis has proved to be an efficient approach to carbocyclic nucleoside analogues and further investigations especially on enantiomerical pure compounds are currently being undertaken in our laboratory.

References and Notes:

- For leading references see: a;Y,F,Shealy, C,A,O'Dell, W,M,Shannon and G,Arnett, J,Med,Chem 29, 483 (1986) b;P,Herdewijn,
 E,De Clerge, J,Balzarini and H,Vanderhaege, J,Med,Chem. 28, 550 (1985).
- 2. D.Ravenscroft, R.F.Newton, D.I.C.Scopes and C.Williamson, Tetrahedron Lett. 1986, 747.
- 3. C.K.H. Tseng and V.E.Marquez, Tetrahedron Lett. 1985, 3669.
- 4. M.Legraverend, R.-M. Ngongo-Tekam, E.Bisagni and A.Zerial, J.Med.Chem. 28, 1477 (1985).
- 5. M.-I.Lim and V.E.Marquez, Tetrahedron, Lett. 1983, 5559.
- 6. S.Daluge and R. Vince, J. Org. Chem. 43, 2311 (1978).
- 7. P. Herdewijn, J. Balzarini, E. De Clercq and H. Vanderhaeghe, J. Med. Chem. 28, 1385 (1985).
- a;M,Ohno, Nucleosides & Nucleotides 4, 21 (1985) b;M,Arita, K,Adachi, Y,Ito, H,Sawai and M,Ohno, J,Am,Chem,Soc. 105, 4049 (1983).
- 9. G.Eichberger, G.Penn, K.Faber and H.Griengl, Tetrahedron Lett., in press.
- 10, 13C-NMR data; (DMSO-de, 90 MHz) &= 71.6, 66.1, 61.0 ppm, C-OH; m/e=147 (MH+).
- 11. Hydrolysis of the reaction mixture with aqueous MgSD4, see E.Hungerbühler and D.Seebach, Helv.Chim.Acta. 64, 687(1981).
- 12. R.Albert, K.Dax, R.Pleschko and A.E.Stütz, Carbohyd, Res. 137, 282 (1985).
- Characteristic ¹H-NMR data: (CDCl₃, 90 MHz) 8= 3.61(d,J=5.8 Hz,2H,CH₂-OH), 4.13(s,2H,O-CH₂), 4.29(m,1H,O-CH), 5.45(s,1H,CH-Ph), 7.21-7.57(m,5H,Ph) ppm.
- 14, E.J.Corey and 6, Schmidt, Tetrahedron Lett. 1979, 399,
- 15. Characteristic ¹H-NMR data; (DMSO-d₆, 90 MHz) δ= 5.25(s,2H,NH₂), 5.35(s,1H,CH-Ph), 5.84(d,J=8.5 Hz,1H,NH), 7.13-7.41(m,5H,Ph) ppm.
- 16. K. Tadano, S. Horiuchi and T. Suami, Chem, Pharm, Bull, Jpn. 51, 897 (1978).
- 17. This compound was recently prepared using a different strategy: £,J,J,Hronowski and W,A,Szarek, Can,J,Chem. 63, 2787 (1985). Physical data are in good agreement.

(Received in Germany 23 June 1986)